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Introduction. In 1890, H. A. Schwartz astounded the mathematical world by
publishing an example which invalidated the accepted definition of surface area [4].
The “cylinder area paradox” is the name given to this insight that opened the
floodgates of mathematical inquiry to investigations into surfaces and surface areas
[1].

The primary reason that mathematicians were led astray was the assumption
that there is a direct analogy between arc length and surface area. In 1948, Tibor
Rado [2] stated: “The present status of the theory supports the view that far-
reaching analogies do exist. But the analogies lie deep while the discrepancies are
conspicuous . . . .” It seems preferable to indicate the incorrect analogy assumed
before illustrating the paradox that pointed up the inconsistencies of an uncritical
acceptance.

The Assumption. The length L(C) of a finite curve C will be defined in the
usual way. Assume C, is any sequence of inscribed polygonal arcs such that C; - C
uniformly. If P is an inscribed polygonal curve, then L(P) < L(C). Also, if e > 0 is
given, there exists a polygonal curve P, such that L(P) > L(C) — €. These two
intuitive ideas show that

L(C)=supL(P)

where P is taken over all inscribed polygons. It follows from this that there exists a
sequence of polygonal approximations C; where C;— C uniformly such that

L(C,)— L(C).

It was this definition that was confounded when an attempt was made to generalize
to areas.

The surface area A4 (S) of a bounded surface was defined in a manner analogous
to the definition of the length of a curve given above. As an example, the following
definition of the area of a surface S bounded by a curve is similar to that given by
J. A. Serrat in 1880 [5]. Let S; be any sequence of inscribed polyhedral surfaces
which converge uniformly to the given surface S, i.e., S;— S uniformly. If P is an
inscribed polyhedral surface of surface S, then 4(P) < A(S). In addition, if € >0
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is given, there exists a polyhedral surface P, such that A(P,) > A(P) — e. There-

fore, _
A(S)=supA(P),
P

where P is taken over all inscribed polyhedral surfaces. Thus, it was incorrectly
concluded that there exists a sequence of inscribed polyhedrons S; where S,— S
uniformly such that

A(S;)—>A(S).
This definition was shown to be untenable by H. A. Schwartz in a letter dated
December 25, 1880, to A. Genocchi and independently by G. Peano in a class
lecture of May 1882 [1].

The Cylinder Area Paradox. Until Schwartz published this paradox, the defini-
tion of surface areas just described was the generally accepted one. The importance
of this example is that the paradox arose from using the assumed definition on an
extremely simple surface, a cylinder [6].

Let S be the lateral surface of a right circular cylinder of height 4 and radius r.
Divide S into m bands by circles lying in planes parallel to the base such that each
band has altitude 4/m. Select two adjacent bands, as in the figure below, and
divide each of the three circles into n congruent arcs such that the endpoints of
these arcs are the vertices of the inscribed triangles. The arcs on the top and the
bottom will be vertically aligned but the arcs in the middle circle are all displaced
through one-half an arc-length. Assume ABAC is any one of the congruent
inscribed triangles and let D and E be the midpoints of segment BC and arc BC,
respectively. Let O be the center of the circle containing arc BC, so that ABOC is
parallel to the base of the cylinder and assume £ BOC = 20. Thus, § = #/n and

|BC|=2r sin 9=2r sin% .

—3 |>———

Figure 1.
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To find the area of ABAC, it is first necessary to apply the Pythagorean theorem
to AADE in order to calculate the altitude |AD|:

|DE|=|0E|—|OD|=r —rcos 6 = ,(1 — cos % )
and
2 2
|AD|*=|AE|*+ |DE|’= ( ﬁ) + r2(1 — cos E) ,
m n
so that
area (ABAC) = % |BC| |4D|,

R
PN

In one band of the cylinder between two consecutive parallel circles there are 2n
of these congruent triangles. Thus, for the m bands, there are 2mn such congruent
triangles and the sum of their areas is

A(m, n) = 2mn(r sin % )\/( % )2 + r2(1 — cos % )2 ,
= 2r(n sin % )\/h2 + (mr)2(1 — cos % )2

It will now be seen that the way in which the limits are taken determine the
value of

lim,, ,_, . A(m, n).
Case 1. Let n— oo first with m held fixed and then let m — 0.
limm—»w [limn—-mo A (m’ n)]

= limm_m[limn_m 2r(n sin % )\/h2 + (mr)2(1 — cos % )2 ]
*®

Each of the following functions can be approximated by the first few terms of its

Taylor series expansion, so that

. T a?
sinT~ X and cos—ml——
n n n 2n?

These approximations are sufficiently accurate for evaluating the following limits:

. .q T
hm,,_m(n sin — ) =lim, , n ( - ) =,
n n
and

limn_m(l ~cos T ) =1lim,_ -2’;— =0.
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These two results imply that

oo iM,_ o A(m, n)] =lim,,_,  2rmh = 2arh.

It is useful to examine this limit geometrically. When n — oo first and m remains
fixed, the number of triangles in a band increases indefinitely and approaches the
surface area of the band. In this case, since the number of bands is considered
fixed at this point, the final answer turns out to be independent of m. Thus, the
sum of the areas of these triangles approaches the expected value for the lateral
surface area.

lim

Case 2. Let m — oo first with n held fixed and then let » — 0.

n—»oo[limm—»oo A (m’ n)]

= lim,,_,m[limm_)00 2r(n sin % )\/h2 + (mr)2(1 — cos % )

lim

2 |

=2r limn_m[(n sin % )limm_)w\/h2 + (mr)2(1 — cos % )2

= Zr[lim,,_m(n sin % ) oo] = 00.

As in Case 1, this limit is interesting to look at geometrically. When m — oo first
and 7 is held fixed, the number of bands increase indefinitely while the number of
triangles in any band is constant. Also, as m — oo, for fixed n, 4 — E which implies
that ABAC becomes practically perpendicular to the surface! It is no wonder that
the area of a sequence of sums of such triangles approaches infinity.

Case 3. Let m and n approach infinity simultaneously so that m/n?= ¢ where
¢ > 0 is a constant. Clearly, A(m, n) = A(cn?, n).

. 2 1 T 2 2,2 _ T 2
lim, , A(cn® n)= llmn_m[Zr(n sin - )\ﬁ + (ren?) (l cos ) ]

-2 lim,,_m(n sin % ) [limn_m\/;ﬂ + (rc)2(n2(l — cos % ))2 }

Using the Taylor series approximation for 1 — cos(w/n) as #2/2n?,

,”2

lim,,_m[nz(l —cos%)] =5

By combining these results, the calculation can now be completed:

r27r4c2

4

lim, . A(cn? n)=2ar\[h*+
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Since ¢ > 0, all answers greater than or equal to 2#rh are possible and thus
lim, A(cn% n) > 2arh.

To illustrate this, let ¢ = 2y3 & / 7’r. Consequently,

24 2
lim, ., A(cn? n) = 27rr\/hz + O B oW+ 30 = darh.
Tr

Using the original evaluation of

A(m, n)= 2r(n sin % )th + (rm)2(1 — cos % )2 ,

A(m, n). The essence of the
A(m, n).

it is clear that 2rh is the minimum value for lim,, ,_,
paradox is the realization that there is no unique answer for lim
However, 27rh is a lower bound for all these limits.

It might be interesting for the reader to prove:

1. lim,_, A(cn, n) =2arh,

2. lim,_, A(cn?, n) = oo,

3. lim,_, A(cVn , n) = 2zrh.

m, n— oo

Conclusion. Since the publication of Schwartz’s paradox became known, a great
number of new interpretations for a theory of surface areas have been proposed.
Rado [3] points out that “In most cases the idea of approximating the given surface
by polyhedrons has been altogether dropped.” Lebesgue’s definition of surface area
devised in 1902 is an exception. According to Lebesgue, the area of a surface is
defined as

A(S) =inf[lim,  inf 4(S;)]

where the infimum of A(S,) is taken over all sequences of polyhedral surfaces that
converge uniformly to S. This definition of surface area created by Lebesgue
circumvented the contradictions posed by the cylinder area paradox and also
maintained the surface area concept as basically geometrical. However, the theory
of surface area is still surprisingly incomplete although very satisfactory results
have been obtained for certain special classes of surfaces [3].
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